Publications in peer reviewed journals

10 Publications found
  • Defects in microvillus crosslinking sensitize to colitis and inflammatory bowel disease

    Mödl B, Awad M, Zwolanek D, Scharf I, Schwertner K, Milovanovic D, Moser D, Schmidt K, Pjevac P, Hausmann B, Krauß D, Mohr T, Svinka J, Kenner L, Casanova E, Timelthaler G, Sibilia M, Krieger S, Eferl R
    2023 - EMBO Reports, in press


    Intestinal epithelial cells are covered by the brush border, which consists of densely packed microvilli. The Intermicrovillar Adhesion Complex (IMAC) links the microvilli and is required for proper brush border organization. Whether microvillus crosslinking is involved in the intestinal barrier function or colitis is currently unknown. We investigate the role of microvillus crosslinking in colitis in mice with deletion of the IMAC component CDHR5. Electron microscopy shows pronounced brush border defects in CDHR5-deficient mice. The defects result in severe mucosal damage after exposure to the colitis-inducing agent DSS. DSS increases the permeability of the mucus layer and brings bacteria in direct contact with the disorganized brush border of CDHR5-deficient mice. This correlates with bacterial invasion into the epithelial cell layer which precedes epithelial apoptosis and inflammation. Single-cell RNA sequencing data of patients with ulcerative colitis reveals downregulation of CDHR5 in enterocytes of diseased areas. Our results provide experimental evidence that a combination of microvillus crosslinking defects with increased permeability of the mucus layer sensitizes to inflammatory bowel disease.

  • Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions.

    Metze D, Schnecker J, Canarini A, Fuchslueger L, Koch BJ, Stone BW, Hungate BA, Hausmann B, Schmidt H, Schaumberger A, Bahn M, Kaiser C, Richter A
    2023 - Nat Commun, 1: 5895


    Climate change increases the frequency and intensity of drought events, affecting soil functions including carbon sequestration and nutrient cycling, which are driven by growing microorganisms. Yet we know little about microbial responses to drought due to methodological limitations. Here, we estimate microbial growth rates in montane grassland soils exposed to ambient conditions, drought, and potential future climate conditions (i.e., soils exposed to 6 years of elevated temperatures and elevated CO levels). For this purpose, we combined O-water vapor equilibration with quantitative stable isotope probing (termed 'vapor-qSIP') to measure taxon-specific microbial growth in dry soils. In our experiments, drought caused >90% of bacterial and archaeal taxa to stop dividing and reduced the growth rates of persisting ones. Under drought, growing taxa accounted for only 4% of the total community as compared to 35% in the controls. Drought-tolerant communities were dominated by specialized members of the Actinobacteriota, particularly the genus Streptomyces. Six years of pre-exposure to future climate conditions (3 °C warming and + 300 ppm atmospheric CO) alleviated drought effects on microbial growth, through more drought-tolerant taxa across major phyla, accounting for 9% of the total community. Our results provide insights into the response of active microbes to drought today and in a future climate, and highlight the importance of studying drought in combination with future climate conditions to capture interactive effects and improve predictions of future soil-climate feedbacks.

  • Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut.

    Ye H, Borusak S, Eberl C, Krasenbrink J, Weiss AS, Chen SC, Hanson BT, Hausmann B, Herbold CW, Pristner M, Zwirzitz B, Warth B, Pjevac P, Schleheck D, Stecher B, Loy A
    2023 - Nat Commun, 1: 5533


    Taurine is not only a semi-essential nutrient of animals and humans, but also a substrate for specialized gut bacteria that respire it to hydrogen sulfide, a smelly gas that can have positive and negative impact on host health. An international team of researchers led by Huimin and Alex from DOME has discovered a novel taurine-respiring bacterium in the mouse gut, Taurinivorans muris, that is highly specialized on taurine and contributes to the protection of the microbiota against intestinal pathogens such as Klebsiella and Salmonella. The study provides new insights into gut microbiome members with a sulfur-based energy metabolism in the gut and their links with other commensal and pathogenic gut bacteria and the bile acid metabolism of the host.

  • Microbial Diversity and Activity of Biofilms from Geothermal Springs in Croatia.

    Kostešić E, Mitrović M, Kajan K, Marković T, Hausmann B, Orlić S, Pjevac P
    2023 - Microb Ecol, in press


    Hot spring biofilms are stable, highly complex microbial structures. They form at dynamic redox and light gradients and are composed of microorganisms adapted to the extreme temperatures and fluctuating geochemical conditions of geothermal environments. In Croatia, a large number of poorly investigated geothermal springs host biofilm communities. Here, we investigated the microbial community composition of biofilms collected over several seasons at 12 geothermal springs and wells. We found biofilm microbial communities to be temporally stable and highly dominated by Cyanobacteria in all but one high-temperature sampling site (Bizovac well). Of the physiochemical parameters recorded, temperature had the strongest influence on biofilm microbial community composition. Besides Cyanobacteria, the biofilms were mainly inhabited by Chloroflexota, Gammaproteobacteria, and Bacteroidota. In a series of incubations with Cyanobacteria-dominated biofilms from Tuhelj spring and Chloroflexota- and Pseudomonadota-dominated biofilms from Bizovac well, we stimulated either chemoorganotrophic or chemolithotrophic community members, to determine the fraction of microorganisms dependent on organic carbon (in situ predominantly produced via photosynthesis) versus energy derived from geochemical redox gradients (here simulated by addition of thiosulfate). We found surprisingly similar levels of activity in response to all substrates in these two distinct biofilm communities, and observed microbial community composition and hot spring geochemistry to be poor predictors of microbial activity in the study systems.

  • Pitfalls in sampling and analyzing low-biomass human nasal microbiome samples.

    Pjevac P, Bartosik T, Schneider S, Eckl-Dorna J
    2023 - J Allergy Clin Immunol, 1: 304
  • Hydrochemical and Seasonally Conditioned Changes of Microbial Communities in the Tufa-Forming Freshwater Network Ecosystem.

    Čačković A, Kajan K, Selak L, Marković T, Brozičević A, Pjevac P, Orlić S
    2023 - mSphere, e0060222


    Freshwater network ecosystems consist of interconnected lotic and lentic environments within the same catchment area. Using Plitvice Lakes as an example, we studied the changes in environmental conditions and microbial communities (bacteria and fungi) that occur with downstream flow. Water samples from tributaries, interlake streams, connections of the cascading lakes, and the Korana River, the main outflow of the system, were characterized using amplicon sequencing of bacterial 16S rRNA and fungal ITS2 genes. Our results show that different environmental conditions and bacterial and fungal communities prevail among the three stream types within the freshwater network ecosystem during multiple sampling seasons. Microbial community differences were also confirmed along the longitudinal gradient between the most distant sampling sites. The higher impact of "mass effect" was evident during spring and winter, while "species sorting" and "environmental selection" was more pronounced during summer. Prokaryotic community assembly was majorly influenced by deterministic processes, while fungal community assembly was highly dominated by stochastic processes, more precisely by the undominated fraction, which is not dominated by any process. Despite the differences between stream types, the microbial community of Plitvice Lakes is shown to be very stable by the core microbiome that makes up the majority of stream communities. Our results suggest microbial community succession along the river-lake continuum of microbial communities in small freshwater network ecosystems with developed tufa barriers. Plitvice Lakes represent a rare freshwater ecosystem consisting of a complex network of lakes and waterfalls connecting them, as well as rivers and streams supplying water to the lake basin. The unique geomorphological, hydrological, biogeochemical, and biological phenomenon of Plitvice Lakes lies in the biodynamic process of forming tufa barriers. In addition to microbial communities, abiotic water factors also have a major influence on the formation of tufa. Therefore, it is important to understand how changes in environmental conditions and microbial community assembly affect the functioning of the ecosystem of a freshwater network with developed tufa barriers.

  • From the Mountain to the Valley: Drivers of Groundwater Prokaryotic Communities along an Alpine River Corridor.

    Retter A, Haas JC, Birk S, Stumpp C, Hausmann B, Griebler C, Karwautz C
    2023 - Microorganisms, 3: in press


    Rivers are the "tip of the iceberg", with the underlying groundwater being the unseen freshwater majority. Microbial community composition and the dynamics of shallow groundwater ecosystems are thus crucial, due to their potential impact on ecosystem processes and functioning. In early summer and late autumn, samples of river water from 14 stations and groundwater from 45 wells were analyzed along a 300 km transect of the Mur River valley, from the Austrian alps to the flats at the Slovenian border. The active and total prokaryotic communities were characterized using high-throughput gene amplicon sequencing. Key physico-chemical parameters and stress indicators were recorded. The dataset was used to challenge ecological concepts and assembly processes in shallow aquifers. The groundwater microbiome is analyzed regarding its composition, change with land use, and difference to the river. Community composition and species turnover differed significantly. At high altitudes, dispersal limitation was the main driver of groundwater community assembly, whereas in the lowland, homogeneous selection explained the larger share. Land use was a key determinant of the groundwater microbiome composition. The alpine region was more diverse and richer in prokaryotic taxa, with some early diverging archaeal lineages being highly abundant. This dataset shows a longitudinal change in prokaryotic communities that is dependent on regional differences affected by geomorphology and land use.

  • Gut microbiome signatures of Yorkshire Terrier enteropathy during disease and remission.

    Doulidis PG, Galler AI, Hausmann B, Berry D, Rodríguez-Rojas A, Burgener IA
    2023 - Sci Rep, 1: 4337


    The role of the gut microbiome in developing Inflammatory Bowel Disease (IBD) in humans and dogs has received attention in recent years. Evidence suggests that IBD is associated with alterations in gut microbial composition, but further research is needed in veterinary medicine. The impact of IBD treatment on the gut microbiome needs to be better understood, especially in a breed-specific form of IBD in Yorkshire Terriers known as Yorkshire Terrier Enteropathy (YTE). This study aimed to investigate the difference in gut microbiome composition between YTE dogs during disease and remission and healthy Yorkshire Terriers. Our results showed a significant increase in specific taxa such as Clostridium sensu stricto 1, Escherichia-Shigella, and Streptococcus, and a decrease in Bacteroides, Prevotella, Alloprevotella, and Phascolarctobacterium in YTE dogs compared to healthy controls. No significant difference was found between the microbiome of dogs in remission and those with active disease, suggesting that the gut microbiome is affected beyond clinical recovery.

  • The microbiome of kidney stones and urine of patients with nephrolithiasis.

    Lemberger U, Pjevac P, Hausmann B, Berry D, Moser D, Jahrreis V, Özsoy M, Shariat SF, Veser J
    2023 - Urolithiasis, 1: 27


    The incidence of nephrolithiasis is rising worldwide. Although it is a multifactorial disease, lifestyle plays a major role in its etiology. Another considerable factor could be an aberrant microbiome. In our observational single-center study, we aimed to investigate the composition of bacteria in kidney stones and urine focusing on patients with features of metabolic syndrome. Catheterized urine and kidney stones were collected prospectively from 100 consecutive patients undergoing endoscopic nephrolithotomy between 2020 and 2021 at our clinic. Microbiome composition was analyzed via 16S rRNA gene amplicon sequencing. Detection of bacteria was successful in 24% of the analyzed kidney stones. These patients had a prolonged length of stay compared to patients without verifiable bacteria in their stones (2.9 vs 1.5 days). Patients with features of metabolic syndrome were characterized by kidney stones colonized with classical gastrointestinal bacteria and displayed a significant enrichment of Enterococcaceae and Enterobacteriaceae. Stones of patients without features of metabolic syndrome characterized by Ureaplasma and Staphylococcaceae. Patients with bacteria in their kidney stones exhibit a longer length of stay, possibly due to more complex care. Patients presenting with features of metabolic syndrome displayed a distinct stone microbiome compared to metabolically fit patients. Understanding the role of bacteria in stone formation could enable targeted therapy, prevention of post-operative complications and new therapeutic strategies.

  • Microbial communities and processes in biofilters for post-treatment of ozonated wastewater treatment plant effluent.

    Sauter D, Steuer A, Wasmund K, Hausmann B, Szewzyk U, Sperlich A, Gnirss R, Cooper M, Wintgens T
    2023 - Sci Total Environ, 2: 159265


    Ozonation is an established solution for organic micropollutant (OMP) abatement in tertiary wastewater treatment. Biofiltration is the most common process for the biological post-treatment step, which is generally required to remove undesired oxidation products from the reaction of ozone with water matrix compounds. This study comparatively investigates the effect of filter media on the removal of organic contaminants and on biofilm properties for biologically activated carbon (BAC) and anthracite biofilters. Biofilms were analysed in two pilot-scale filters that have been operated for >50,000 bed volumes as post-treatment for ozonated wastewater treatment plant effluent. In parallel, the removal performance of bulk organics and OMP, including differentiation of adsorption and biotransformation through sodium azide inhibition, were carried out in bench-scale filter columns filled with material from the pilot filters. The use of BAC instead of anthracite resulted in an improved removal of organic bulk parameters, dissolved oxygen, and OMP. The OMP removal observed in the BAC filter but not in the anthracite filter was based on adsorption for most of the investigated compounds. For valsartan, however, biotransformation was found to be the dominant pathway, indicating that conditions for biotransformation of certain OMP are better on BAC than on anthracite. Adenosine triphosphate analyses in the media-attached biofilms of the pilot filters showed that biomass concentrations in the BAC filter were significantly higher than in the anthracite filter. The microbial communities (16S rRNA gene sequencing) appeared to be similar with respect to the types of organisms occurring on both filter materials. Alpha diversity also exhibited little variation between filter media. Beta diversity analysis, however, revealed that filter media and bed depth substantially influenced the biofilm composition. In practice, the impact of filter media on biofilm properties and biotransformation processes should be considered for the design of biofilters.

Book chapters and other publications

No matching database entries were found.