Publications in peer reviewed journals

6 Publications found
  • Global abundance patterns, diversity, and ecology of Patescibacteria in wastewater treatment plants.

    Hu H, Kristensen JM, Herbold CW, Pjevac P, Kitzinger K, Hausmann B, Dueholm MKD, Nielsen PH, Wagner M
    2024 - Microbiome, 1: 55


    Microorganisms are responsible for nutrient removal and resource recovery in wastewater treatment plants (WWTPs), and their diversity is often studied by 16S rRNA gene amplicon sequencing. However, this approach underestimates the abundance and diversity of Patescibacteria due to the low coverage of commonly used PCR primers for this highly divergent bacterial phylum. Therefore, our current understanding of the global diversity, distribution, and ecological role of Patescibacteria in WWTPs is very incomplete. This is particularly relevant as Patescibacteria are considered to be associated with microbial host cells and can therefore influence the abundance and temporal variability of other microbial groups that are important for WWTP functioning.
    Here, we evaluated the in silico coverage of widely used 16S rRNA gene-targeted primer pairs and redesigned a primer pair targeting the V4 region of bacterial and archaeal 16S rRNA genes to expand its coverage for Patescibacteria. We then experimentally evaluated and compared the performance of the original and modified V4-targeted primers on 565 WWTP samples from the MiDAS global sample collection. Using the modified primer pair, the percentage of ASVs classified as Patescibacteria increased from 5.9 to 23.8%, and the number of detected patescibacterial genera increased from 560 to 1576, while the detected diversity of the remaining microbial community remained similar. Due to this significantly improved coverage of Patescibacteria, we identified 23 core genera of Patescibacteria in WWTPs and described the global distribution pattern of these unusual microbes in these systems. Finally, correlation network analysis revealed potential host organisms that might be associated with Patescibacteria in WWTPs. Interestingly, strong indications were found for an association between Patescibacteria of the Saccharimonadia and globally abundant polyphosphate-accumulating organisms of the genus Ca. Phosphoribacter.
    Our study (i) provides an improved 16S rRNA gene V4 region-targeted amplicon primer pair inclusive of Patescibacteria with little impact on the detection of other taxa, (ii) reveals the diversity and distribution patterns of Patescibacteria in WWTPs on a global scale, and (iii) provides new insights into the ecological role and potential hosts of Patescibacteria in WWTPs. Video Abstract.

  • Viral potential to modulate microbial methane metabolism varies by habitat.

    Zhong ZP, Du J, Köstlbacher S, Pjevac P, Orlić S, Sullivan MB
    2024 - Nat Commun, 1: 1857


    Methane is a potent greenhouse gas contributing to global warming. Microorganisms largely drive the biogeochemical cycling of methane, yet little is known about viral contributions to methane metabolism (MM). We analyzed 982 publicly available metagenomes from host-associated and environmental habitats containing microbial MM genes, expanding the known MM auxiliary metabolic genes (AMGs) from three to 24, including seven genes exclusive to MM pathways. These AMGs are recovered on 911 viral contigs predicted to infect 14 prokaryotic phyla including Halobacteriota, Methanobacteriota, and Thermoproteota. Of those 24, most were encoded by viruses from rumen (16/24), with substantially fewer by viruses from environmental habitats (0-7/24). To search for additional MM AMGs from an environmental habitat, we generate metagenomes from methane-rich sediments in Vrana Lake, Croatia. Therein, we find diverse viral communities, with most viruses predicted to infect methanogens and methanotrophs and some encoding 13 AMGs that can modulate host metabolisms. However, none of these AMGs directly participate in MM pathways. Together these findings suggest that the extent to which viruses use AMGs to modulate host metabolic processes (e.g., MM) varies depending on the ecological properties of the habitat in which they dwell and is not always predictable by habitat biogeochemical properties.

  • Soil warming increases the number of growing bacterial taxa but not their growth rates.

    Metze D, Schnecker J, de Carlan CLN, Bhattarai B, Verbruggen E, Ostonen I, Janssens IA, Sigurdsson BD, Hausmann B, Kaiser C, Richter A
    2024 - Sci Adv, 8: eadk6295


    Soil microorganisms control the fate of soil organic carbon. Warming may accelerate their activities putting large carbon stocks at risk of decomposition. Existing knowledge about microbial responses to warming is based on community-level measurements, leaving the underlying mechanisms unexplored and hindering predictions. In a long-term soil warming experiment in a Subarctic grassland, we investigated how active populations of bacteria and archaea responded to elevated soil temperatures (+6°C) and the influence of plant roots, by measuring taxon-specific growth rates using quantitative stable isotope probing and O water vapor equilibration. Contrary to prior assumptions, increased community growth was associated with a greater number of active bacterial taxa rather than generally faster-growing populations. We also found that root presence enhanced bacterial growth at ambient temperatures but not at elevated temperatures, indicating a shift in plant-microbe interactions. Our results, thus, reveal a mechanism of how soil bacteria respond to warming that cannot be inferred from community-level measurements.

  • The maternal microbiome in pregnancy, delivery, and early-stage development of neonatal microbiome after cesarean section: A prospective longitudinal study.

    Foessleitner P, Pjevac P, Granser S, Wisgrill L, Pummer L, Eckel F, Seki D, Berry D, Hausmann B, Farr A
    2024 - Acta Obstet Gynecol Scand, in press


    Changes within the maternal microbiome during the last trimester of pregnancy and the determinants of the subsequent neonatal microbiome establishment after delivery by elective cesarean section are described.
    Maternal vaginal and rectal microbiome samples were collected in the last trimester and before cesarean section; intrauterine cavity, placenta, neonatal buccal mucosa, skin, and meconium samples were obtained at birth; neonatal sample collection was repeated 2-3 days postnatally. Microbial community composition was analyzed by 16S rRNA gene amplicon sequencing. Relative abundance measurements of amplicon sequencing variants and sum counts at higher taxonomic levels were compared to test for significant overlap or differences in microbial community compositions.
    gov ID: NCT04489056.
    A total of 30 mothers and their neonates were included with available microbiome samples for all maternal, intrauterine cavity and placenta samples, as well as for 18 of 30 neonates. The composition of maternal vaginal and rectal microbiomes during the last trimester of healthy pregnancies did not significantly change (permutational multivariate analysis of variance [PERMANOVA], p > 0.05). No robust microbial signature was detected in the intrauterine cavity, placenta, neonatal buccal mucosa, skin swabs, or meconium samples collected at birth. After birth, the neonatal microbiome was rapidly established, and significantly different microbial communities were detectable 2-3 days postnatally in neonate buccal mucosa and stool samples (PERMANOVA, p < 0.01).
    Maternal vaginal and rectal microbiomes in healthy pregnancies remain stable during the third trimester. No microbial colonization of the neonate was observed before birth in healthy pregnancies. Neonatal microbiomes in infants delivered by cesarean section displayed a taxonomic composition distinct from maternal vaginal and rectal microbiomes at birth, indicating that postnatal exposure to the extrauterine environment is the driving source of initial neonatal microbiome development in this cohort.

  • Biomonitoring of Dietary Mycotoxin Exposure and Associated Impact on the Gut Microbiome in Nigerian Infants.

    Ayeni KI, Seki D, Pjevac P, Hausmann B, Krausová M, Braun D, Wisgrill L, Berry D, Warth B, Ezekiel CN
    2024 - Environ Sci Technol, in press


    Mycotoxins are toxic chemicals that adversely affect human health. Here, we assessed the influence of mycotoxin exposure on the longitudinal development of early life intestinal microbiota of Nigerian neonates and infants (NIs). Human biomonitoring assays based on liquid chromatography tandem mass spectrometry were applied to quantify mycotoxins in breast milk ( = 68) consumed by the NIs, their stool ( = 82), and urine samples ( = 15), which were collected longitudinally from month 1-18 postdelivery. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing of stool samples and was correlated to mycotoxin exposure patterns. Fumonisin B (FB), FB, and alternariol monomethyl ether (AME) were frequently quantified in stool samples between months 6 and 18. Aflatoxin M (AFM), AME, and citrinin were quantified in breast milk samples at low concentrations. AFM, FB, and ochratoxin A were quantified in urine samples at relatively high concentrations. and / were dominant in very early life stool samples (month 1), whereas was dominant between months 3 and 6. The total mycotoxin levels in stool were significantly associated with NIs' gut microbiome composition (PERMANOVA, < 0.05). However, no significant correlation was observed between specific microbiota and the detection of certain mycotoxins. Albeit a small cohort, this study demonstrates that mycotoxins may influence early life gut microbiome composition.

  • Obesity increases allergic airway inflammation that can be successfully treated by oral tolerance.

    Geissler N, Orola M, Alinaghi M, Nardo A, Stulnig TM, Séneca J, Schmid A, Korb E, Svoboda T, Garner-Spitzer E, Kundi M, Ehling-Schulz M, Schabussova I, Inic-Kanada A, Wiedermann U
    2024 - Allergy, 2: 529-533

Book chapters and other publications

No matching database entries were found.