Publications

Publications in peer reviewed journals

15 Publications found
  • Individual sweet taste perception influences salivary characteristics after orosensory stimulation with sucrose and non-caloric sweeteners

    Karl CM, Vidakovic A, Pjevac P, Hausmann B, Schleining G, Ley JP, Berry D, Hans J, Wendlin M, Koenig J, Somoza V, Lieder B
    2022 - Frontiers in Nutrition, 737: 831726

    Abstract: 

    Emerging evidence suggests a major role for salivary flow and the viscoelastic properties for taste perception and mouthfeel. Sweet-tasting compounds have also been proposed to have an effect on salivary characteristic. However, it is yet not clarified if perceived differences in the sensorial properties of structural diverse sweet tasting compounds contribute to salivary flow and viscoelasticity of saliva as part of mouthfeel and overall taste perception. Here we hypothesized that sensorially diverse sweeteners would affect salivary characteristics differently. Thus, we investigated the salivary flow, viscoelasticity of saliva, and selected influencing factors including the basal oral microbiome from 21 healthy test subjects after orosensory stimulation with sucrose, rebaudioside M (RebM), sucralose, and neohesperidin dihydrochalcone (NHDC) in a cross-over design. All test compounds enhanced the salivary flow by up to 1.51 ± 0.12 g/min for RebM, compared to 1.10 ± 0.09 g/min for water in the first minute after stimulation. The increase in the flow rate was correlated moderately to the individual perceived sweetness (r= 0.3, p< 0.01), but did not differ between the test compounds. The complex viscosity of the saliva was not affected by the test compounds, but analysis of covariance showed that the complex viscosity was associated (p< 0.05) with the concentration of mucin 5B (Muc5B). The oral microbiome showed a typical composition and diversity but was strongly individual-dependent (PERMANOVA: R²=0.76, p< 0.001), and was not associated with the changes in salivary characteristics. In conclusion, the present study indicates an impact of the individual sweetness impression on the flow rate without measurable changes in the complex viscosity of saliva, which may contribute to overall taste perception and mouthfeel of sweet tasting compounds.

  • Nutrient niche specificity for glycosaminoglycans is reflected in polysaccharide utilization locus architecture of gut species.

    Overbeeke A, Hausmann B, Nikolov G, Pereira FC, Herbold CW, Berry D
    2022 - Front Microbiol, 1033355

    Abstract: 

    Glycosaminoglycans (GAGs) present in the mucosal layer can be used as nutrients by certain intestinal bacteria, particularly members of the Bacteroides. GAG abundances are altered in some diseases such as inflammatory bowel diseases, which may affect microbial composition and activity, and it is therefore important to understand GAG utilization by members of the gut microbiota.
    We used growth assays, transcriptomics, and comparative genomics to evaluate chondroitin sulfate (CS) and hyaluronan (HA) degradation ability by multiple gut Bacteroides species.
    We found that not all Bacteroides species able to degrade CS could also degrade HA, despite having lyases which act on both compounds. We propose that in the model organism Bacteroides thetaiotaomicron, the lyase BT_3328 in combination with surface binding proteins BT_3329 and BT_3330 and potentially BT_4411 are involved in HA breakdown. Furthermore, degradation of both compounds provides public goods for other Bacteroides, including non-degraders, suggesting that cooperative degradation as well as cross-feeding may be widespread in the mucosal glycan utilization clade.

  • Disturbances in microbial skin recolonization and cutaneous immune response following allogeneic stem cell transfer.

    Bayer N, Hausman B, Pandey RV, Deckert F, Gail LM, Strobl J, Pjevac P, Krall C, Unterluggauer L, Redl A, Bachmayr V, Kleissl L, Nehr M, Kirkegaard R, Makristathis A, Watzenboeck ML, Nica R, Staud C, Hammerl L, Wohlfarth P, Ecker RC, Knapp S, Rabitsch W, Berry D, Stary G
    2022 - Leukemia, 11: 2705-2714

    Abstract: 

    The composition of the gut microbiome influences the clinical course after allogeneic hematopoietic stem cell transplantation (HSCT), but little is known about the relevance of skin microorganisms. In a single-center, observational study, we recruited a cohort of 50 patients before undergoing conditioning treatment and took both stool and skin samples up to one year after HSCT. We could confirm intestinal dysbiosis following HSCT and report that the skin microbiome is likewise perturbed in HSCT-recipients. Overall bacterial colonization of the skin was decreased after conditioning. Particularly patients that developed acute skin graft-versus-host disease (aGVHD) presented with an overabundance of Staphylococcus spp. In addition, a loss in alpha diversity was indicative of aGVHD development already before disease onset and correlated with disease severity. Further, co-localization of CD45 leukocytes and staphylococci was observed in the skin of aGVHD patients even before disease development and paralleled with upregulated genes required for antigen-presentation in mononuclear phagocytes. Overall, our data reveal disturbances of the skin microbiome as well as cutaneous immune response in HSCT recipients with changes associated with cutaneous aGVHD.

  • Arbuscular Mycorrhiza and Nitrification: Disentangling Processes and Players by Using Synthetic Nitrification Inhibitors.

    Dudáš M, Pjevac P, Kotianová M, Gančarčíková K, Rozmoš M, Hršelová H, Bukovská P, Jansa J
    2022 - Appl Environ Microbiol, 20: e0136922

    Abstract: 

    Both plants and their associated arbuscular mycorrhizal (AM) fungi require nitrogen (N) for their metabolism and growth. This can result in both positive and negative effects of AM symbiosis on plant N nutrition. Either way, the demand for and efficiency of uptake of mineral N from the soil by mycorrhizal plants are often higher than those of nonmycorrhizal plants. In consequence, the symbiosis of plants with AM fungi exerts important feedbacks on soil processes in general and N cycling in particular. Here, we investigated the role of the AM symbiosis in N uptake by Andropogon gerardii from an organic source (N-labeled plant litter) that was provided beyond the direct reach of roots. In addition, we tested if pathways of N uptake from litter by mycorrhizal hyphae were affected by amendment with different synthetic nitrification inhibitors (dicyandiamide [DCD], nitrapyrin, or 3,4-dimethylpyrazole phosphate [DMPP]). We observed efficient acquisition of N by mycorrhizal plants through the mycorrhizal pathway, independent of nitrification inhibitors. These results were in stark contrast to N uptake by nonmycorrhizal plants, which generally took up much less N, and the uptake was further suppressed by nitrapyrin or DMPP amendments. Quantitative real-time PCR analyses showed that bacteria involved in the rate-limiting step of nitrification, ammonia oxidation, were suppressed similarly by the presence of AM fungi and by nitrapyrin or DMPP (but not DCD) amendments. On the other hand, abundances of ammonia-oxidizing archaea were not strongly affected by either the AM fungi or the nitrification inhibitors. Nitrogen is one of the most important elements for all life on Earth. In soil, N is present in various chemical forms and is fiercely competed for by various microorganisms as well as plants. Here, we address competition for reduced N (ammonia) between ammonia-oxidizing prokaryotes and arbuscular mycorrhizal fungi. These two functionally important groups of soil microorganisms, participating in nitrification and plant mineral nutrient acquisition, respectively, have often been studied in separation in the past. Here, we showed, using various biochemical and molecular approaches, that the fungi systematically suppress ammonia-oxidizing bacteria to an extent similar to that of some widely used synthetic nitrification inhibitors, whereas they have only a limited impact on abundance of ammonia-oxidizing archaea. Competition for free ammonium is a plausible explanation here, but it is also possible that the fungi produce some compounds acting as so-called biological nitrification inhibitors.

  • Microbial community composition and hydrochemistry of underexplored geothermal waters in Croatia.

    Mitrović M, Kostešić E, Marković T, Selak L, Hausmann B, Pjevac P, Orlić S
    2022 - Syst Appl Microbiol, 6: 126359

    Abstract: 

    In Croatia, a variety of geothermal springs with a wide temperature range and varied hydrochemical conditions exist, and they may harbor different niches for the distribution of microbial communities. In this study, 19 different sites, mainly located in central and eastern Croatia, were selected for primary characterization of spring hydrochemistry and microbial community composition. Using 16S rRNA gene amplicon sequencing, it was found that the bacterial communities that dominated most geothermal waters were related to Proteobacteria and Campylobacteria, while most archaeal sequences were related to Crenarchaeota. At the genus level, the prokaryotic community was highly site-specific and was often dominated by a single genus, including sites dominated by Hydrogenophilus, Sulfuricurvum, Sulfurovum, Thiofaba and Nitrospira, while the most abundant archaeal genera were affiliated to the ammonia-oxidizing archaea, Candidatus Nitrosotenuis and Candidatus Nitrososphaera. Whereas the microbial communities were overall highly location-specific, temperature, pH, ammonia, nitrate, total nitrogen, sulfate and hydrogen sulfide, as well as dissolved organic and inorganic carbon, were the abiotic factors that significantly affected microbial community composition. Furthermore, an aquifer-type effect was observed in the community composition, but there was no pronounced seasonal variability for geothermal spring communities (i.e. the community structure was mainly stable during the three seasons sampled). These results surprisingly pointed to stable and geographically unique microbial communities that were adapted to different geothermal water environments throughout Croatia. Knowing which microbial communities are present in these extreme habitats is essential for future research. They will allow us to explore further the microbial metabolisms prevailing at these geothermal sites that have high potential for biotechnological uses, as well as the establishment of the links between microbial community structure and the physicochemical environment of geothermal waters.

  • Microbial community composition and hydrochemistry of underexplored geothermal waters in Croatia.

    Mitrović M, Kostešić E, Marković T, Selak L, Hausmann B, Pjevac P, Orlić S
    2022 - Syst Appl Microbiol, 6: 126359

    Abstract: 

    In Croatia, a variety of geothermal springs with a wide temperature range and varied hydrochemical conditions exist, and they may harbor different niches for the distribution of microbial communities. In this study, 19 different sites, mainly located in central and eastern Croatia, were selected for primary characterization of spring hydrochemistry and microbial community composition. Using 16S rRNA gene amplicon sequencing, it was found that the bacterial communities that dominated most geothermal waters were related to Proteobacteria and Campylobacteria, while most archaeal sequences were related to Crenarchaeota. At the genus level, the prokaryotic community was highly site-specific and was often dominated by a single genus, including sites dominated by Hydrogenophilus, Sulfuricurvum, Sulfurovum, Thiofaba and Nitrospira, while the most abundant archaeal genera were affiliated to the ammonia-oxidizing archaea, Candidatus Nitrosotenuis and Candidatus Nitrososphaera. Whereas the microbial communities were overall highly location-specific, temperature, pH, ammonia, nitrate, total nitrogen, sulfate and hydrogen sulfide, as well as dissolved organic and inorganic carbon, were the abiotic factors that significantly affected microbial community composition. Furthermore, an aquifer-type effect was observed in the community composition, but there was no pronounced seasonal variability for geothermal spring communities (i.e. the community structure was mainly stable during the three seasons sampled). These results surprisingly pointed to stable and geographically unique microbial communities that were adapted to different geothermal water environments throughout Croatia. Knowing which microbial communities are present in these extreme habitats is essential for future research. They will allow us to explore further the microbial metabolisms prevailing at these geothermal sites that have high potential for biotechnological uses, as well as the establishment of the links between microbial community structure and the physicochemical environment of geothermal waters.

  • Impaired Mucosal Homeostasis in Short-Term Fiber Deprivation Is Due to Reduced Mucus Production Rather Than Overgrowth of Mucus-Degrading Bacteria.

    Overbeeke A, Lang M, Hausmann B, Watzka M, Nikolov G, Schwarz J, Kohl G, De Paepe K, Eislmayr K, Decker T, Richter A, Berry D
    2022 - Nutrients, 18: in press

    Abstract: 

    The gut mucosal environment is key in host health; protecting against pathogens and providing a niche for beneficial bacteria, thereby facilitating a mutualistic balance between host and microbiome. Lack of dietary fiber results in erosion of the mucosal layer, suggested to be a result of increased mucus-degrading gut bacteria. This study aimed to use quantitative analyses to investigate the diet-induced imbalance of mucosal homeostasis. Seven days of fiber-deficiency affected intestinal anatomy and physiology, seen by reduced intestinal length and loss of the colonic crypt-structure. Moreover, the mucus layer was diminished, expression decreased, and impaired mucus secretion was detected by stable isotope probing. Quantitative microbiome profiling of the gut microbiota showed a diet-induced reduction in bacterial load and decreased diversity across the intestinal tract, including taxa with fiber-degrading and butyrate-producing capabilities. Most importantly, there was little change in the absolute abundance of known mucus-degrading bacteria, although, due to the general loss of taxa, relative abundance would erroneously indicate an increase in mucus degraders. These findings underscore the importance of using quantitative methods in microbiome research, suggesting erosion of the mucus layer during fiber deprivation is due to diminished mucus production rather than overgrowth of mucus degraders.

  • How to Verify Non-Presence-The Challenge of Axenic Algae Cultivation.

    Pokorny L, Hausmann B, Pjevac P, Schagerl M
    2022 - Cells, 16: in press

    Abstract: 

    Many phycological applications require the growth and maintenance of pure algae cultures. In some research areas, such as biochemistry and physiology, axenic growth is essential to avoid misinterpretations caused by contaminants. Nonetheless, axenicity-defined as the state of only a single strain being present, free of any other organism-needs to be verified. We compare the available methods to assess axenicity. We first purified unialgal cultures with an established series of axenicity treatments, and by including two additional treatment steps. The presumable axenic cultures were then tested for their axenic state by applying conventional tests on LB (lysogeny broth) agar-plates, 16S rRNA gene amplicon sequencing, flow-cytometry and epifluorescence microscopy. Only the plate tests indicated axenic conditions. We found a linear relationship between total cell counts of contaminants achieved by flow cytometry and epifluorescence microscopy, with flow cytometry counts being consistently higher. In addition, 16S rRNA gene amplicon sequencing demonstrated its superiority by not only being an efficient tool for axenicity testing, but also for identification of persistent contaminants. Although classic plate tests are still commonly used to verify axenicity, we found the LB-agar-plate technique to be inappropriate. Cultivation-independent methods are highly recommended to test for axenic conditions. A combination of flow-cytometry and 16S rRNA gene amplicon sequencing complement each other and will yield the most reliable result.

  • Microbial marker for seawater intrusion in a coastal Mediterranean shallow Lake, Lake Vrana, Croatia.

    Selak L, Marković T, Pjevac P, Orlić S
    2022 - Sci Total Environ, 157859

    Abstract: 

    Climate change-induced rising sea levels and prolonged dry periods impose a global threat to the freshwater scarcity on the coastline: salinization. Lake Vrana is the largest surface freshwater resource in mid-Dalmatia, while the local springs are heavily used in agriculture. The karstified carbonate ridge that separates this shallow lake from the Adriatic Sea enables seawater intrusion if the lakes' precipitation-evaporation balance is disturbed. In this study, the impact of anthropogenic activities and drought exuberated salinization on microbial communities was tracked in Lake Vrana and its inlets, using 16S rRNA gene sequencing. The lack of precipitation and high water temperatures in summer months introduced an imbalance in the water regime of the lake, allowing for seawater intrusion, mainly via the karst conduit Jugovir. The determined microbial community spatial differences in the lake itself and the main drainage canals were driven by salinity, drought, and nutrient loading. Particle-associated and free-living microorganisms both strongly responded to the ecosystem perturbations, and their co-occurrence was driven by the salinization event. Notably, a bloom of halotolerant taxa, predominant the sulfur-oxidizing genus Sulfurovum, emerged with increased salinity and sulfate concentrations, having the potential to be used as an indicator for salinization of shallow coastal lakes. Following summer salinization, lake water column homogenization took from a couple of weeks up to a few months, while the entire system displayed increased salinity despite increased precipitation. This study represents a valuable contribution to understanding the impact of the Freshwater Salinization Syndrome on Mediterranean lakes' microbial communities and the ecosystem resilience.

  • SRS-FISH: A high-throughput platform linking microbiome metabolism to identity at the single-cell level.

    Ge X, Pereira FC, Mitteregger M, Berry D, Zhang M, Hausmann B, Zhang J, Schintlmeister A, Wagner M, Cheng JX
    2022 - Proc Natl Acad Sci U S A, 26: e2203519119

    Abstract: 

    One of the biggest challenges in microbiome research in environmental and medical samples is to better understand functional properties of microbial community members at a single-cell level. Single-cell isotope probing has become a key tool for this purpose, but the current detection methods for determination of isotope incorporation into single cells do not allow high-throughput analyses. Here, we report on the development of an imaging-based approach termed stimulated Raman scattering-two-photon fluorescence in situ hybridization (SRS-FISH) for high-throughput metabolism and identity analyses of microbial communities with single-cell resolution. SRS-FISH offers an imaging speed of 10 to 100 ms per cell, which is two to three orders of magnitude faster than achievable by state-of-the-art methods. Using this technique, we delineated metabolic responses of 30,000 individual cells to various mucosal sugars in the human gut microbiome via incorporation of deuterium from heavy water as an activity marker. Application of SRS-FISH to investigate the utilization of host-derived nutrients by two major human gut microbiome taxa revealed that response to mucosal sugars tends to be dominated by Bacteroidales, with an unexpected finding that Clostridia can outperform Bacteroidales at foraging fucose. With high sensitivity and speed, SRS-FISH will enable researchers to probe the fine-scale temporal, spatial, and individual activity patterns of microbial cells in complex communities with unprecedented detail.

  • Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf.

    Amorim K, Loick-Wilde N, Yuen B, Osvatic JT, Wäge-Recchioni J, Hausmann B, Petersen JM, Fabian J, Wodarg D, Zettler ML
    2022 - Sci Rep, 1: 9731

    Abstract: 

    The molluscs Lucinoma capensis, Lembulus bicuspidatus and Nassarius vinctus are highly abundant in Namibian oxygen minimum zone sediments. To understand which nutritional strategies allow them to reach such impressive abundances in this extreme habitat we investigated their trophic diversity, including a chemosymbiosis in L. capensis, focussing on nitrogen biochemical pathways of the symbionts. We combined results of bulk nitrogen and carbon (δC and δN) and of compound-specific isotope analyses of amino acid nitrogen (AAs-δN and δN), with 16S rRNA gene sequencing of L. capensis tissues and also with exploratory results of ammonium, nitrate and nitrite turnover. The trophic position (TP) of the bivalve L. capensis is placed between autotrophy and mixotrophy, consistent with its proposed symbiosis with sulfur-oxidizing Candidatus Thiodiazotropha sp. symbionts. The symbionts are here revealed to perform nitrate reduction and ammonium uptake, with clear indications of ammonium host-symbionts recycling, but surprisingly unable to fix nitrogen. The TP of the bivalve L. bicuspidatus is placed in between mixotrophy and herbivory. The TP of the gastropod N. vinctus reflected omnivory. Multiple lines of evidences in combination with current ecosystem knowledge point to sedimented diatoms as important components of L. bicuspidatus and N. vinctus' diet, likely supplemented at times with chemoautotrophic bacteria. This study highlights the importance of benthic-pelagic coupling that fosters the dietary base for macrozoobenthos in the OMZ. It further unveils that, in contrast to all shallow water lucinid symbionts, deeper water lucinid symbionts rely on ammonium assimilation rather than dinitrogen fixation to obtain nitrogen for growth.

  • Elucidating the role of the gut microbiota in the physiological effects of dietary fiber.

    Deehan EC, Zhang Z, Riva A, Armet AM, Perez-Muñoz ME, Nguyen NK, Krysa JA, Seethaler B, Zhao YY, Cole J, Li F, Hausmann B, Spittler A, Nazare JA, Delzenne NM, Curtis JM, Wismer WV, Proctor SD, Bakal JA, Bischoff SC, Knights D, Field CJ, Berry D, Prado CM, Walter J
    2022 - Microbiome, 1: 77

    Abstract: 

    Dietary fiber is an integral part of a healthy diet, but questions remain about the mechanisms that underlie effects and the causal contributions of the gut microbiota. Here, we performed a 6-week exploratory trial in adults with excess weight (BMI: 25-35 kg/m) to compare the effects of a high-dose (females: 25 g/day; males: 35 g/day) supplement of fermentable corn bran arabinoxylan (AX; n = 15) with that of microbiota-non-accessible microcrystalline cellulose (MCC; n = 16). Obesity-related surrogate endpoints and biomarkers of host-microbiome interactions implicated in the pathophysiology of obesity (trimethylamine N-oxide, gut hormones, cytokines, and measures of intestinal barrier integrity) were assessed. We then determined whether clinical outcomes could be predicted by fecal microbiota features or mechanistic biomarkers.
    AX enhanced satiety after a meal and decreased homeostatic model assessment of insulin resistance (HOMA-IR), while MCC reduced tumor necrosis factor-α and fecal calprotectin. Machine learning models determined that effects on satiety could be predicted by fecal bacterial taxa that utilized AX, as identified by bioorthogonal non-canonical amino acid tagging. Reductions in HOMA-IR and calprotectin were associated with shifts in fecal bile acids, but correlations were negative, suggesting that the benefits of fiber may not be mediated by their effects on bile acid pools. Biomarkers of host-microbiome interactions often linked to bacterial metabolites derived from fiber fermentation (short-chain fatty acids) were not affected by AX supplementation when compared to non-accessible MCC.
    This study demonstrates the efficacy of purified dietary fibers when used as supplements and suggests that satietogenic effects of AX may be linked to bacterial taxa that ferment the fiber or utilize breakdown products. Other effects are likely microbiome independent. The findings provide a basis for fiber-type specific therapeutic applications and their personalization.
    Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract.

  • Differential Modulation of the European Sea Bass Gut Microbiota by Distinct Insect Meals.

    Rangel F, Enes P, Gasco L, Gai F, Hausmann B, Berry D, Oliva-Teles A, Serra CR, Pereira FC
    2022 - Front Microbiol, 831034

    Abstract: 

    The aquaculture industry is one of the fastest-growing sectors in animal food production. However, farming of carnivorous fish strongly relies on the use of wild fish-based meals, a practice that is environmentally and economically unsustainable. Insect-based diets constitute a strong candidate for fishmeal substitution, due to their high nutritional value and low environmental footprint. Nevertheless, data on the impact of insect meal (IM) on the gut microbiome of farmed fish are so far inconclusive, and very scarce in what concerns modulation of microbial-mediated functions. Here we use high-throughput 16S rRNA gene amplicon sequencing and quantitative PCR to evaluate the impact of different IMs on the composition and chitinolytic potential of the European sea bass gut digesta- and mucosa-associated communities. Our results show that insect-based diets of distinct origins differently impact the gut microbiota of the European sea bass (). We detected clear modulatory effects of IM on the gut microbiota, which were more pronounced in the digesta, where communities differed considerably among the diets tested. Major community shifts were associated with the use of black soldier fly larvae (, HM) and pupal exuviae (HEM) feeds and were characterized by an increase in the relative abundance of the Firmicutes families , , and and the Actinobacteria family , which all include taxa considered beneficial for fish health. Modulation of the digesta community by HEM was characterized by a sharp increase in and a decrease of several Gammaproteobacteria and Bacteroidota members. In turn, a mealworm larvae-based diet (, TM) had only a modest impact on microbiota composition. Further, using quantitative PCR, we demonstrate that shifts induced by HEM were accompanied by an increase in copy number of chitinase ChiA-encoding genes, predominantly originating from species with effective chitinolytic activity. Our study reveals an HEM-driven increase in chitin-degrading taxa and associated chitinolytic activity, uncovering potential benefits of adopting exuviae-supplemented diets, a waste product of insect rearing, as a functional ingredient.

  • Individuality of the Extremely Premature Infant Gut Microbiota Is Driven by Ecological Drift.

    Seki D, Schauberger C, Hausmann B, Berger A, Wisgrill L, Berry D
    2022 - mSystems, e0016322

    Abstract: 

    The initial contact between humans and their colonizing gut microbiota after birth is thought to have expansive and long-lasting consequences for physiology and health. Premature infants are at high risk of suffering from lifelong impairments, due in part to aberrant development of gut microbiota that can contribute to early-life infections and inflammation. Despite their importance to health, the ecological assembly and succession processes governing gut microbiome composition in premature infants remained incompletely understood. Here, we quantified these ecological processes in a spatiotemporally resolved 16S rRNA gene amplicon sequencing data set of 60 extremely premature neonates using an established mathematical framework. We found that gut colonization during the first months of life is predominantly stochastic, whereby interindividual diversification of microbiota is driven by ecological drift. Dispersal limitations are initially small but have increasing influence at later stages of succession. Furthermore, we find similar trends in a cohort of 32 healthy term-born infants. These results suggest that the uniqueness of individual gut microbiota of extremely premature infants is largely due to stochastic assembly. Our knowledge concerning the initial gut microbiome assembly in human neonates is limited, and scientific progression in this interdisciplinary field is hindered due to the individuality in composition of gut microbiota. Our study addresses the ecological processes that result in the observed individuality of microbes in the gastrointestinal tract between extremely premature and term-born infants. We find that initial assembly is mainly driven by neutral ecological processes. Interestingly, while this progression is predominantly random, limitations to the dispersal of microbiota between infants become increasingly important with age and are concomitant features of gut microbiome stability. This indicates that while we cannot predict gut microbiota assembly due to its random nature, we can expect the establishment of certain ecological features that are highly relevant for neonatal health.

  • Interleukin-11 drives human and mouse alcohol-related liver disease.

    Effenberger M, Widjaja AA, Grabherr F, Schaefer B, Grander C, Mayr L, Schwaerzler J, Enrich B, Moser P, Fink J, Pedrini A, Jaschke N, Kirchmair A, Pfister A, Hausmann B, Bale R, Putzer D, Zoller H, Schafer S, Pjevac P, Trajanoski Z, Oberhuber G, Adolph T, Cook S, Tilg H
    2022 - Gut, in press

    Abstract: 

    Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD.
    IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD.
    IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury.
    Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.

Book chapters and other publications

No matching database entries were found.